J. Alvarez-Muñiz <u>R. Conceição</u> J. Dias de Deus M. C. Espírito Santo J. G. Milhano M. Pimenta

NET-BARYON PHYSICS

Basic Mechanism

Introduction I

- Net-Baryon = (Baryons Anti-Baryons)
- As the baryon number is conserved, the netbaryon keeps track of the energy-momentum carried by the incoming particles
- At very high energy it is assumed that sea quarks dominate over the valence
- How does the fraction of energy carried by the net-baryon evolve as a function of the centre-ofmass energy per nucleon?

Introduction II

- The net-baryon has not been fully studied by Experiments
- In Monte Carlo hadronic models the physics of netbaryon production is very much obscured by the complexity of extensive and detailed codes
- Build a simple model to explain net-baryon data and predict the behaviour at higher energies

What we know...

Experimental Data

- > AGS
- > NA49
- ➢ RHIC − (BRAHMS)

Current Model Predictions

- > EPOS 1.61
- > QGSJET-II.03

Net-Proton Data

Rapidity Distribution

 Δ Distribution ($\Delta \equiv y - y_p$)

5% most central collisions Data have been corrected for weak decays

Experimental Data

Rapidity loss given by

• y_p is the beam rapidity

Scarce Data
Large uncertainties

Net-Baryon Rapidity Loss

Model Predictions (Pb-Pb at 17 GeV)

Weak decay Corrections Applied to Data

QGSJET-II is not expected to perform very well at such low energies

Our Simple Model

Description of the model

Comparison with data

Predictions for higher energies

Model – String Formation

 Formation of extended color fields or strings

 > Quark Combinatorial
 > The string gets its energy-momentum from the valence quarks PDFs

- \succ Dependency of Q²
- > CTEQ6
- Nuclear effects taken into account (EKS98)

String Characteristics (200 GeV)

Mass Spectrum of strings

Momentum of string A

Model – String Fragmentation

Mechanism of String Fragmentation:

- It is assumed that the string decays into a baryon and a meson
- Kinematic Constraints
- Both fundamental and excited states were considered taking spin-dependent weights (2j+1)
- Unstable baryon were forced to decay in order to enter in net-baryon calculations
- The contribution of s quarks was not considered at this point

Model – String Fragmentation II

Mechanism of String Fragmentation:

- The baryon produced will have the direction of the two nearest quarks in momentum
 - Diagram 1 is predominant at low energies
 - At high energies Diagram
 2 will be as important as
 Diagram 1

Can reproduce some features of string baryon junction and pop corn $x_3 < x_2 < x_1$

Net-Baryon Rapidity

Evolution with energy is a consequence of QCD evolution of the PDFs and kinematic constraints in the string fragmentation

Effective Q² – Data Fits

- Effective Q² as quark
 PDFs input
- Fits were performed to the available net-proton data
 - Q²
 - Normalization factor
 - $pp \rightarrow AA$ collisions
 - net-baryon \rightarrow net-proton
 - strange baryons contribution

Comparison with Data

Assuming that:

$$\frac{dn}{dy}\Big|_{A-A} \simeq \frac{1}{2}N_{part} \times \frac{dn}{dy}\Big|_{p^*-p^*}$$

 $p^{*}\text{-}\operatorname{proton}\operatorname{pdfs}\operatorname{with}\operatorname{nuclear}\operatorname{corrections}$

Evolution with collision energy \sqrt{s}

Relate effective Q² with collision energy using

$$Q^2 = Q_0^2 \left(\frac{\sqrt{s}}{\sqrt{s_0}}\right)^{\lambda_v} \left[GeV^2\right]$$

Taking $\sqrt{s_0} = 5$ GeV We obtain:

$$\lambda_v = 0.77^{+0.18}_{-0.13}$$
$$Q_0^2 = 0.30^{+0.05}_{-0.01}$$

$\sqrt{s}~({\rm GeV})$	$\operatorname{Collision}$	$Q^2~({\rm GeV^2})$	N_{part}
5	Au-Au	$0.30^{+0.04}_{-0.01}$	$269.9^{+10.4}_{-9.0}$
17	Pb-Pb	$0.77^{+0.18}_{-0.04}$	$299.6^{+9.7}_{-7.7}$

Net-Baryon Predictions

- Rapidity distribution
- Rapidity Loss
- Fraction of energy carried

Conclusions

- We believe that the role of the Net-Baryon is not negligible
- EPOS 1.61 and QGSJET-II have problems in reproducing the Net-Baryon data at low energies
- Simple Model can reproduce the Net-Baryon's main features
- Centrality dependence is under study
- New (and forward) data needed!!

Backup slides

Weak decays

EPOS 1.61

Net-Proton at vs = 200 GeV

Centrality Dependence

Minimum Bias vs Central Collisions

EPOS 1.61