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Abstract— Propagation of charged Cosmic Rays in the Galaxy
depends on the transport parameters, which number can be
large depending on the propagation model under scrutiny.
Yet, a standard approach to determine these parameters is a
manual scan, leading to an inefficient and incomplete coverage
of the parameter space. The awaited results of forthcoming
experiments call for a better strategy. An automated statistical
tool is required for a full coverage and a sound determination of
the transport and source parameters. We implement a Markov
Chain Monte Carlo (MCMC), which is well suited for multi-
parameter determination. Its capabilities and performances are
explored on the phenomenologically well understood Leaky Box
Model. A trial function based on binary space partitioning proves
to be very efficient, allowing a simultaneous determination of up
to nine parameters, including transport and source parameters
(slope, abundances). The best model includes both a low energy
cut-off and reacceleration, which values are compatible with
those found in diffusion models. A Kolmogorov spectrum for
the diffusion slope (δ = 1/3) is excluded. The marginalised
probability density function for δ and α (the slope of the source
spectra) are δ ≈ 0.55 − 0.60 and α ≈ 2.14 − 2.17, depending on
the dataset used and the number of free parameters in the fit.

I. INTRODUCTION

One issue of cosmic-ray (CR) physics is the determination

of the transport parameters in the Galaxy. Such a determination

is based on the analysis of the secondary-to-primary ratio

(e.g. B/C, sub-Fe/Fe), in which the dependence on the source

spectra factors remain mostly sensitive to the propagation

processes (e.g., [20] and references therein). For nearly 20

years, the determination of these parameters relied mostly on

the most constraining data, namely the HEAO-3 data, taken

in 1979, which cover the ∼ 1 − 35 GeV/n range ([11]).

For the first time since HEAO-3, several satellite or bal-

loon borne experiments (see ICRC 2007 reporter’s talk [4])

have obtained better data in the same energy range, i.e.

1 TeV/n−PeV/n, or covered a yet scarcely explored range in

terms of nucleus: the ATIC collaboration has presented some

results for the B/C ratio at 0.5 − 50 GeV/n ([25]), and for

H to Fe fluxes at 100 GeV−100 TeV ([24]). The TRACER

collaboration has recently published spectra for O up to Fe

in the GeV/n-TeV/n range ([1], [5]). The CREAM experiment

([26]) flew a cumulative duration of 70 days in December

2004 and December 2005 ([27] and preliminary results in [19],

[31]), and again in December 2007. A fourth flight is schedule
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for December 20081. Finally, some exciting data will soon

come from the PAMELA satellite.

It is relevant to question the method to extract the prop-

agation parameters in order to take the best advantage of

this wealth of new data. This determination is an important

issue for many theoretical and astrophysical questions, as it is

linked, amongst others, to the transport in turbulent magnetic

fields, sources of CRs, γ-ray diffuse emission (see [30] for

a recent review and references). It also proves to be crucial

for indirect dark matter detection studies (e.g. [8], [9]). The

usage in the past has been mostly based on a manual or

semi-automated—hence partial—coverage of the parameter

space (e.g., [14], [29], [33]). More complete scans have

been performed in [16], [20], [21], although in an inefficient

manner: the addition of a single new free parameter (as done

for example in [21] compared to [20]) remains prohibitive

in terms of computer time. Such a scan is generally further

complicated by the observation of large degeneracies in the

parameter space [20].

Therefore it is necessary to use an efficient and sound

numerical tool to i) cover efficiently the parameter space

and ii) enable the enlargement of the parameter space at a

minimal computing time cost. The Markov Chain Monte Carlo

(MCMC) algorithm, widely used for cosmological parameter

estimates (see e.g. [6], [10], [15] and references therein), meets

these demands.

II. MARKOV CHAIN MONTE CARLO (MCMC)

Markov Chain Monte Carlo (MCMC) techniques have

proven particularly well-defined for Bayesian parameter esti-

mates ([18], [22]). The Bayesian approach aims at assessing to

which extent an experimental dataset improves our knowledge

of a given theoretical model. Considering a model depending

on m parameters

θ ≡ {θ(1), θ(2), . . . , θ(m)}, (1)

we wish to determine the conditional probability density

function (PDF) of the parameters given the data, P (θ|data).
This so-called posterior probability quantifies the change in

the degree of belief one can have in the m parameters of

the model in the light of the data. Applied to the parameter

inference, Bayes theorem reads

P (θ|data) =
P (data|θ) · P (θ)

P (data)
, (2)

1http://cosmicray.umd.edu/cream/cream.html



where P (data) is the data probability (the latter does not

depend on the parameters and hence, can be thought as a

normalisation factor). This theorem links the posterior proba-

bility to the likelihood of the data L(θ) ≡ P (data|θ) and the

so-called prior probability, P (θ), giving the degree of belief

one has before observing the data. The technically difficult

point of Bayesian parameter estimates lies in the determi-

nation of the individual posterior PDF, which requires an

(high-dimensional) integration of the overall posterior density.

Thus an efficient sampling method for the posterior PDF is

mandatory. For models having more than a few parameters,

regular grid-sampling approaches break down and statistical

techniques are required [7]. Among the latter, MCMC algo-

rithms have been fully tried and tested for Bayesian parameter

inference [18], [22].

MCMC methods aim at exploring any target distribution of

a vector of parameters p(θ), by generating a sequence of n
points (hereafter a chain)

{~θi}i=1,...,n ≡ {θ1, θ2, . . . , θn}. (3)

Each θi is a vector of m components [e.g., as defined in

Eq. (1)]. In addition, the chain is Markovian in the sense that

the distribution of θn+1 is entirely influenced by the value

of θn. MCMC algorithms are built such as the time spent

by the Markov chain in a region of the parameter space is

proportional to the target PDF value in this region. Hence,

from such a chain, one can obtain an independent sampling

of the PDF. The target PDF as well as all marginalised PDF

are estimated by counting the number of samples within the

related region of parameter space.

A. The algorithm

The prescription we use to generate the Markov chains from

the unknown target distribution is the so-called Metropolis-

Hastings algorithm (the interested reader is referred to [18],

[22, chapter 29] for further details and references.). The

Markov chain grows in jumping from the current point in the

parameter space θi to the following θi+1. As said before,

the PDF of the new point only depends on the current point,

i.e. T (θi+1|θ1, . . . ,θi) = T (θi+1|θi). This quantity defines

the transition probability for state θi+1 from the state θi.

The Metropolis-Hastings algorithm gives a prescription on the

transition probability to ensure that the stationary distribution

of the chain asymptotically tends to the target PDF one wishes

to sample from.

At each step i (corresponding to a state θi), a trial state

θtrial is generated from a proposal density q(θtrial|θi). This

proposal density is chosen so that samples can be easily

generated (e.g. a Gaussian distribution centred on the current

state). The state θtrial is accepted or rejected depending on

the following criterion: forming the quantity

a(θtrial|θi) = min

(

1,
p(θtrial)

p(θi)

q(θi|θtrial)

q(θtrial|θi)

)

, (4)

the trial state is accepted as a new state with a probability a
(rejected with probability 1− a). The transition probability is

then

T (θi+1|θi) = a(θtrial|θi)q(θtrial|θi). (5)

If accepted, θi+1 = θtrial, whereas if rejected, the new state

is equal to the current state, θi+1 = θi. This criterion ensures

that once at its equilibrium, the chain samples the target

distribution p(θ).

B. Chain analysis

The starting point θ0 of a chain is chosen randomly. The

time needed to reach a state uncorrelated to θ0, i.e. to “forget”

the starting point, is called the burn-in length b. The b first

samples {θi}i=1,...,b of the chain have to be discarded for

a further analysis. Each step depends on the previous one,

which makes the samples of the chain correlated. To obtain

independent samples, thinning the chain is mandatory. The

correlation length l is defined as the smallest j for which the

states θi and θi+j of the chain are considered uncorrelated.

C. Choice of the target and trial functions

1) Target function: As already said, we wish to sample

the target function p(θ) = P (θ|data). Using Eq. (2) and the

fact that the algorithm is not sensitive to the normalisation

factor, this amounts to sample the product P (data|θ) · P (θ).
Assuming a flat prior P (θ) = cst, the target distribution

reduces to

p(θ) = P (data|θ) ≡ L(θ). (6)

Here, the likelihood function is taken as

L(θ) = exp

(

−χ2(θ)

2

)

. (7)

The χ2(θ) function for ndata data is

χ2(θ) =

ndata
∑

k=1

(yexp
k − ytheo

k (θ))2

σ2
k

, (8)

where yexp
k is the measured value, ytheo

k is the hypothesised

value for a certain model and the parameters θ, and σk is the

known variance of the measurement. For example, yexp
k and

ytheo
k represent the measured and calculated B/C ratios.

2) Trial function: Despite the effectiveness of the

Metropolis-Hastings algorithm, in order to optimise the ef-

ficiency of the MCMC and minimise the number of chains to

be run, trial functions should be as close as possible to the true

distributions. We use below a sequence of three trial functions

to explore the parameter space. The first step is a coarse

determination of the parameter PDF using m independent

Gaussian distributions centred on θi. This allows to calculate

the covariance matrix used by the second proposal density,

an N-dimensional Gaussian of covariance matrix V . This step

provides a better coverage of the parameter space by taking

into account possible correlations between the m parameters.

The last step takes advantage of a binary space partitioning

(BSP) algorithm. The results of the covariance matrix run are

used to subdivide the parameter space into boxes for each of

which a given probability is affected. The proposal density is

defined as a uniform function equal to the assigned probability.



In comparison to the other two proposal densities, this on is

not symmetric, because it is only dependent on the proposal

state q(θtrial).

III. IMPLEMENTATION IN THE PROPAGATION MODEL

The MCMC with the three above methods are implemented

in the USINE package2, that computes the propagation of

galactic CR nuclei and anti-nuclei for several propagation

models (LBM, 1D and 2D diffusion models). The reader is

referred to [20] for a detailed description for the nuclear pa-

rameters (fragmentation and absorption cross sections), energy

losses (ionisation and Coulomb) and solar modulation (force-

field) used.

In this algorithm, it is up to the user to decide i) which

data to use, ii) which observable is retained to calculate the

likelihood, and iii) the number of free parameters m (of the

vector θ, depending on the propagation model chosen) for

which we seek the posterior PDF.

The framework we use is the Leaky Box Model (LBM),

a simple propagation model widely used in the past decades.

This model contains most of the CR phenomenology and is

well adapted for a first implementation of the MCMC tool.

A. Leaky Box Model (LBM)

The LBM assumes that all cosmic-ray species are confined

in the Galaxy, with an escape rate equal to N/τesc, where

the escape time τesc is rigidity-dependent, and is written as

τesc(R). This escape time has two origins. First, cosmic rays

can leak out the confinement volume and leave the Galaxy.

Second, they can be destructed by spallation on interstellar

matter nuclei. This latter effect is parameterised by the gram-

mage x (usually expressed in g/cm2), defined as the column

density of interstellar matter encountered by a path followed

by a cosmic ray. The cosmic rays that reach the Earth have

followed different paths, so that they can be described by a

grammage distribution N(x) ≡ dN/dx. The LBM assumes

that

N(x) ∝ exp−λesc(R)x , (9)

where the mean grammage λesc(R) = 〈x〉 is related to

the mass m, velocity v and escape time τesc(R) through

λesc(R) = m̄nvτesc(R).
The function λesc(R) determines the amount of spallations

undergone by a primary species, and thus determines the

secondary-to-primary ratios, for instance B/C. The grammage

λesc(R) is known to provide an effective description of dif-

fusion models [2]: it can be related to the efficiency of con-

finement (which is determined by the diffusion coefficient and

to the size and geometry of the diffusion volume), spallative

destruction (which tend to shorten the average lifetime of a

cosmic ray and thus to lower λesc), and a mixture of other

processes (such as convection, energy gain and losses).

In this paper, we compute the fluxes in the framework

of the LBM with minimal reacceleration by the interstellar

2A public version will be released soon (Maurin, in preparation).

turbulence, as described in [23], [28]. The grammage λesc(R)
is parameterised as

λesc(R) =

{

λ0βR
−(δ−δ0)
0 R−δ0 when R < R0,

λ0βR−δ otherwise;
(10)

where we allow for a break, i.e. a different slope below and

above a critical rigidity R0. The standard form used in the

literature is recovered setting δ0 = 0.

To summarise, our LBM with reacceleration may involve up

to five free parameters, i.e. the normalisation λ0, the slopes δ0

and δ below or above the cut-off rigidity R0, and a pseudo-

Alfvén velocity Va related to the reacceleration strength.

B. Source spectra

We assume that the primary source spectrum Qj(E) for

each nuclear species j considered are given by (β = v/c)

Qj(E) ≡ dQj/dE = qjβ
ηj R−αj , (11)

where qj is the source abundance, αj is the slope of species j
and the term βηj encodes our ignorance about the low energy

spectral shape. We assume that αj ≡ α for all j, and unless

stated otherwise, ηj ≡ η = −1 in order to recover dQ/dp ∝
p−α, as obtained from acceleration models (e.g., [13]).

In this work, the source abundances are initialised to the

solar system abundances ([17]) times the first ionisation po-

tential (FIP) taken from [3]. During the run, the elemental

abundances are then rescaled—keeping fixed the relative iso-

topic abundances—to match experimental data (see Fig. 1 in

[21] for further details), so the result is not sensitive to the

input values.

The measurement of all propagated isotopic fluxes should

completely characterise all source spectra parameters, i.e. the

qj and αj parameters should be free. However, only elemental

fluxes are available, which motivates the above rescaling

approach. In Sec. IV-B, a few runs are undertaken to determine

self-consistently, along with the propagation parameters, i) α
and η, and ii) the source abundances for the primary species C,

O and the mixed N elements (main contributors to the boron

flux).

IV. RESULTS

In particular, the sequential use of the three sampling

methods (Gaussian step, then covariance matrix step, then

binary space partitioning) is found to be the most efficient:

the results presented hereafter all rely on this sequence.

A. Fitting the B/C ratio

1) HEAO-3 data alone: In this section the model parame-

ters are constrained by HEAO-3 data only ([11]). These data

are the most precise data available at the present day for the

stable nuclei ratio B/C in the energy range of 0.62 to 35 GeV/n.

The values obtained for our Model I = {λ0, R0, δ} =
{54, 4.2, 0.7} are in fair agreement with those derived by [32],

who found {λ0, R0, δ} = {38.27, 3.6, 0.7}. The difference

for λ0 could be related to the fact that [32] rely on a mere
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Fig. 1. Best fit curves for Model I (blue dotted line), II (red dashed line),
and Model III (black solid line) using only the HEAO-3 data (green symbols).
The curves are modulated with Φ = 250 GV.

eye inspection to extract the best fit or/and use a different set

of data.

The reacceleration mechanism was invoked in the lit-

erature in order to decrease the spectral index δ toward

the preferred value 1/3 given by a Kolmogorov spectrum

of turbulence. The estimated propagation parameter values

for the models II ({λ0, δ, Va} = {26, 0.52, 88}) and III

({λ0, R0, δ, Va} = {30, 2.8, 0.58, 75}) are indeed slightly

smaller than for Model I, but the Kolmogorov spectral index

is excluded for all this three cases. This result agrees with the

findings of [20], in which a more realistic two dimensional

diffusion model with reacceleration and convection was used.

Note that the values for Va ∼ 80 km s−1 kpc−1, would lead

to a true speed Va = Va ×
√

hL ∼ 80 km s−1 in a diffusion

model for which the thin disk half-height is h = 0.1 kpc and

the halo size is L = 10 kpc: this is consistent with values

found in [21].

The best χ2 value per degree of freedom, χ2
min/dof, for each

model allows to compare the relative merit of the models. LB

models with reacceleration better fit HEAO-3 data: χ2/dof of

1.43 and 1.30 respectively for the Models II and III compared

to χ2/dof = 4.35 for Model I. The best fit B/C fluxes are shown

along the B/C HEAO-3 data modulated at Φ = 250 MV in

Fig. 1. Physically, the origin of a cutoff R0 in λesc at low

energy can be related to convection in diffusion models [12].

Hence, it is a distinct process as reacceleration. The fact that

Model III performs better than Model II hints at the fact that

both processes are significant, as found in [20].

2) Confidence levels for the B/C ratio: Taking advantage

of the knowledge of the χ2 distribution, we can extract a list

of configurations, i.e. a list of parameter sets, based on CLs

of the χ2 PDF allowing to derive e.g. fluxes3.

The B/C best fit curve (dashed blue), the 68% (red solid)

3For instance, it can be used to predict the p or d̄ background flux to look
for a dark matter annihilating contribution, as done, e.g. in [9].
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Fig. 2. Confidence regions of the B/C ratio for Model III-C. The blue dashed
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modulation parameters are used: Φ = 225 MV below 0.4 GeV/n (adapted
for ACE+Voyager1&2+IMP7-8 data) and Φ = 250 MV above (adapted for
HEAO-3 data).

and 95% (black solid) CL envelopes are shown in Fig. 2. This

demonstrates that, for the specific case of the LBM, current

data already strongly constrain the B/C flux (as contained

in the very good value χ2
min = 1.06), even at high energy.

This leads to good prospects for the discriminating power

of forthcoming data. However, such a conclusion has to

be confirmed by an analysis in a more refined model (e.g.

diffusion model), where the situation might not be as simple.

B. Adding free parameters related to the source spectra

In all previous studies (e.g. [14]), the source parameters

are investigated once the propagation parameters have been

determined from the B/C ratio (or other secondary to primary

ratio). We propose a more general approach, where we si-

multaneously fit all the parameters. With the current data, it

already provides strong constraints on the CR source slope α
and source abundances (CNO). Awaiting for better data to take

full advantage of the method, we show how this approach can

also help uncover inconsistencies in measured fluxes.

For all models below, taking advantage of the results

obtained in Sec. IV-A, we retain Model III-C. The roman

number refers to the free transport parameters of the model

(III = {λ0, R0, δ, Va}) and the capital refers to the choice

of the B/C dataset (C=HEAO-3+Voyager1&2+IMP7-8). This

is supplemented by source spectra parameters and additional

data.

1) Source shape α and η from Eq. (11): We first add, as a

free parameter, the universal source slope α (Model III-C+1).

We then let η, parameterising a universal low energy shape

of all spectra, as a second free parameter (Model III-C+2).

In addition to B/C which constrains the transport parameters,

some primary species must be added to constrain α and η. We

restrict ourselves to O, the most abundant boron progenitor,

as it has been measured by the HEAO-3 experiment [11], but



Model-Data λ0 R0 δ Va α η 1020 × (qC |qN |qO)†

g cm−2 GV km s−1kpc−1 (m3 s GeV/n)−1

III-C‡ 27+2

−2
2.6+0.4

−0.7
0.53+0.02

−0.03
86+9

−5
- - -

III-C+1 37+2

−2
4.4+0.1

−0.2
0.61+0.01

−0.01
64+4

−4
2.124+0.005

−0.007
- -

III-C+2 29+2

−2
2.7+0.3

−0.4
0.55+0.01

−0.02
84+4

−7
2.16+0.01

−0.01
0.3+0.1

−0.2
-

III-C+4 40+3

−1
4.6+0.2

−0.1
0.64+0.01

−0.02
58+2

−5
2.13+0.01

−0.01
- 1.93+0.04

−0.004
|0.089+0.007

−0.005
|2.42+0.04

−0.05

III-C+5 38+1

−2
4.4+0.1

−0.3
0.60+0.02

−0.01
81+4

−1
2.17+0.02

−0.02
−0.4+1.2

−0.1
2.2+0.2

−0.1
|0.107+0.01

−0.006
|2.7+0.3

−0.1

‡ III-C: propagation parameters are {λ0, R0, δ, Va} and the B/C dataset is HEAO-3+Voyager1&2+IMP7-8.
† Abundances are 1.65|0.10|2.04 for HEAO-3 ([11]).

TABLE I

MOST PROBABLE VALUES OF THE PROPAGATION PARAMETERS (AFTER MARGINALISING OVER THE OTHER PARAMETERS) FOR MODELS III-C+ ,. THE

ADDITIONAL FREE PARAMETERS CORRESPOND TO: 1 = {α}, 2 = {α, η}, 4 = {α, qC , qN, qO}, 5 = {α, η, qC , qN, qO} WITH O DATA FROM HEAO-3.

THE UNCERTAINTY ON THE PARAMETERS CORRESPOND TO 68% CL OF THE MARGINALISED PDF.

also very recently by the TRACER experiment [1]. During

our study it became apparent that these two datasets are

incompatible at low energies and that the HEAO-3 dataset

seems to be more reliable. The most probable parameters are

gathered in Tab. I, where, to provide a comparison, the first line

reports the values found for Model III-C (i.e. with γ ≡ α + δ
is fixed to 2.65). We remark that adding HEAO-3 oxygen data

in the fit, the propagation parameters λ0, R0 and δ overshoot

Model III-C’s results. The parameter Va undershoots for this

model, as it is anti-correlated to the former parameters. As

a consequence, the fit to B/C is worsened, especially at low

energy (not shown).

To remedy this, we let η as a free parameter (model III+2).

The net effect is to absorb whatever uncertainty that comes

from either the modulation level or the source spectrum low

energy shape. The value η ' 0.3 might give a reasonable guess

of the low energy shape of the source spectrum, but might be

as well a consequence of systematics of the experiment.

Whereas it is premature to draw any firm conclusion on

the low energy shape, we can turn the argument around as

to serve as a diagnosis of the low energy data quality. For

instance, assuming that the shape of all light to heavy elements

is the same, extracting and comparing ηi for each of these

i elements may diagnose some systematics remaining in the

data. It would be worth fitting the H and He species which are

the best measured fluxes to date, and this is left for a future

study carried in the diffusion models.

2) α, η and source normalisation qi: The last two models

add, as free parameters, the CNO elemental source abundances

(relative isotopic abundances are fixed to SS ones). The data

used in the fit are B/C, C, N and O, all measured by HEAO-3

(TRACER data for C and N have not been published yet). The

models, which are denoted for short 4 and 5 in the text below,

are:

• III-C+4: {λ0, R0, δ, Va} + {α, qC , qN , qO};

• III-C+5: {λ0, R0, δ, Va} + {α, η, qC , qN , qO}.

The most probable values are gathered in Tab. I. Compared

with the respective Models 1 and 2, leaving the source abun-

dances qC , qN and qO free in 4 and 5 does not significantly

change the conclusions. Again, adding η (2 and 5) as a free

parameter allows to absorb the low energy uncertainties on the

data, so that we obtain α = 2.17 (5) instead of the biased value

2.13 (4). The same conclusions hold for other propagation

parameters. On the derived source abundances, the impact of

adding the parameter η is to increase them. The relative C:N:O

abundances (O ≡ 1) are respectively 0.78 : 0.36 : 1 (4) and

0.82 : 0.40 : 1 (5), the second model providing values slightly

closer to those derived from HEAO-3 data 0.81 : 0.49 : 1.

All source elemental abundances, when rescaling them to

match the data or including them in the MCMC, are roughly in

agreement, however our approach underlines the importance

of taking properly into account the correlations between the

parameters to extract unbiased estimates of the propagation

and source parameters.

The goodness of fit on the models on the B/C, C, N and O

data are no better, but no worse than those with qC,N,O fixed.

As soon as primary fluxes are included in the fit (compared

to Model III-C), the χ2
min is worsened. This is due to a

combination of an imperfect fit on the primary fluxes and,

as already said, a worsened B/C fit because the propagation

parameters are optimised to match the former rather than the

latter. The best fit CNO fluxes are plotted in Fig. 3 as an

illustration.

3) Perspective on source spectrum parameters: Other pri-

mary species may have been combined in the χ2 calculation to

i) constrain further α, and/or ii) to check the hypothesis αi 6=
αj for different species, and/or iii) diagnose some problems in

the data if we believe the slope should be universal. However,

using a few primary species (O or CNO) already affects the

goodness of fit of B/C. As there are many more measured

primary fluxes than secondary ones, taking too many primaries

would weight too much in the χ2 compared to B/C, and this

would drive the MCMC in regions of the parameter space such

as to fit these fluxes rather than B/C. As systematics are known

to be larger in flux measurements than in ratio, this may lead

to biased estimates of the propagation parameters. Letting η
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Fig. 3. Carbon, nitrogen and oxygen fluxes from best fit models. A very
good fit to HEAO-3 data is achieved for all models and all three elements:
the “large” χ2

min
∼ 4 found for all models is partly related to the fact that for

some energies, the error bars on HEAO-3 data are likely to be underestimated.
Models with η set to -1 (1 and 4) or with η converging to ∼ 0.3 − 0.4 (2
and 5) differ only at very low energy.

as a free parameter allows to some extent to settle this issue

for the low energy part of the spectrum.

To illustrate the difficulty on data systematics, suffices to say

that for the most abundant species H and He, all experiments

were giving mutually incompatible measurements, until AMS

and BESS experiments flew ten years ago. We then cannot

expect HEAO-3 data, taken in 1979, to be completely free of

such drawbacks. Again, we await the publication of several

forthcoming new data before pursuing further along this line.

V. CONCLUSION

We implemented a Markov Chain Monte Carlo to extract the

posterior distribution functions of the propagation parameters

in a Leaky Box Model. Three trial functions were used, namely

a standard Gaussian step, an N-dimensional Gaussian step and

its covariance matrix, and a binary space partitioning. For each

method, a large number of chains can be run in parallel to

speed up the PDF calculations. The three trial functions were

used sequentially, each method providing some inputs for the

next: while the first one is very good at zoning the gross range

of the propagation parameters, it is not as efficient to provide

a fine description of the PDF. This is somehow the reverse

for the two others, so that the sequential use ending with the

binary space partitioning provides the best description of the

PDF.

In this first paper, we focused on the phenomenologically

well understood Leaky Box Model, to ease and simplify the

discussion and implementation of the MCMC. In agreement

with previous studies, we confirm that a model with a rigidity

cutoff performs better than without and that reacceleration is

preferred over no reacceleration. Such a model can be asso-

ciated to a diffusion model with wind and reacceleration. As

found in [20], the best fit models demand both a rigidity cutoff

(wind) and reacceleration, but do not allow to reconcile the

diffusion slope with a Kolmogorov spectrum for turbulence.

In a last stage, we let free the abundance and slope of the

source spectra as well as the elemental abundances of C, N and

O. This shows some correlation between the propagation and

source parameters, potentially biasing the estimates of these

parameters. The best fit for the slope of the source abundances

is α ≈ 2.17 using HEAO-3 data. The MCMC approach allows

to draw confidence intervals for the propagation parameters,

the source parameters, and also for all fluxes.

A wealth of new data on galactic cosmic ray fluxes are

expected soon. As illustrated on the LBM, the MCMC is

a robust tool to handle the complexity of data and model

parameters, where one should fit at the same time all source

and propagation parameters to avoid bias. The next step is

to apply it to more realistic diffusion models and on larger

datasets including more nuclear species.

REFERENCES

[1] M. Ave et al. Astrophysical Journal, 678:262–273, 2008.
[2] V. S. Berezinskii, S. V. Bulanov, V. A. Dogiel, and V. S. Ptuskin.

Astrophysics of cosmic rays. Amsterdam: North-Holland, 1990, edited
by Ginzburg, V.L., 1990.

[3] W. R. Binns et al. Astrophysical Journal, 346:997–1009, 1989.
[4] P. Blasi. ArXiv e-prints, 0801.4534, 2008.
[5] P. J. Boyle et al. ArXiv Astrophysics e-prints, 2007.
[6] N. Christensen, R. Meyer, L. Knox, and B. Luey. Classical and Quantum

Gravity, 18:2677–2688, 2001.
[7] G. Cowan. Statistical data analysis. Publisher: Oxford: Clarendon Press,

1998 Series: Oxford science publications. ISBN: 0198501560, 1997.
[8] T. Delahaye et al. ArXiv e-prints, 712.2312, 2007.
[9] F. Donato et al. Physical Review D, 69(6):063501, 2004.

[10] J. Dunkley et al. Monthly Notices of the Royal Astronomical Society,
356:925–936, 2005.

[11] J. J. Engelmann et al. Astronomy & Astrophysics, 233:96–111, 1990.
[12] F. C. Jones. Astrophysical Journal, 229:747–752, 1979.
[13] F. C. Jones. Astrophysical Journal Supplement, 90:561–565, 1994.
[14] F. C. Jones et al. Astrophysical Journal, 547:264–271, 2001.
[15] A. Lewis and S. Bridle. Physical Review D, 66(10):103511, 2002.
[16] A. M. Lionetto et al. Journal of Cosmology and Astro-Particle Physics,

9:10, 2005.
[17] K. Lodders. Astrophysical Journal, 591:1220–1247, 2003.
[18] David MacKay. Information Theory, Inference, and Learning Algo-

rithms. Publisher: Cambridge University Press. ISBN: 0521642981,
2003.

[19] P. S. Marrocchesi et al. 36:3129, 2006.
[20] D. Maurin et al. Astrophysical Journal, 555:585–596, 2001.
[21] D. Maurin et al. Astronomy and Astrophys., 394:1039–1056, 2002.
[22] Redford M. Neal. Probabilistic Inference Using Markov Chain Monte

Carlo Methods. Technical Report CRG-TR-93-1, Department of Com-
puter Science, University of Toronto, 1993.

[23] J. L. Osborne and V. S. Ptuskin. Soviet Astronomy Letters, 14:132, 1988.
[24] A. D. Panov et al. ArXiv Astrophysics e-prints, 0612377, 2006.
[25] A. D. Panov et al. ICRC2007, ArXiv e-prints, 0707.4415, 2007.
[26] E. S. Seo et al. Advances in Space Research, 33:1777–1785, 2004.
[27] E. S. Seo et al. COSPAR, Plenary Meeting, 36:1846, 2006.
[28] E. S. Seo and V. S. Ptuskin. Astrophysical Journal, 431:705–714, 1994.
[29] A. W. Strong and I. V. Moskalenko. Astrophysical Journal, 509:212–

228, 1998.
[30] A. W. Strong et al. Annual Review of Nuclear and Particle Science,

57:285–327, 2007.
[31] S. P. Wakely et al. COSPAR, Plenary Meeting, 36:3231, 2006.
[32] W. R. Webber et al. Astrophysical Journal, 508:940–948, 1998.
[33] W. R. Webber, M. A. Lee, and M. Gupta. Astrophysical Journal, 390:96–

104, 1992.


