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Abstract— The energetic spectra of accelerated energetic par-
ticles is investigated using kinetic equation in a statistically
anisotropic helical turbulent magnetic field in the diffusion
approximation. The acceleration mechanism based on the α-effect
is compared with the second order Fermi acceleration [7] (cited as
Paper I). The solutions of the time-dependent equation describing
stochastic particle acceleration are obtained. The steady state
cosmic ray energetic spectra are also derived, and the evolution
of accelerated particle spectra by their approach to equilibrium
state is studied. Obtained results can be useful for description of
particle acceleration in solar flares, supernova remnants, galactic
nuclei and other astrophysical environments.

I. INTRODUCTION

One of known acceleration mechanisms is the acceleration

of charged energetic particles in stochastic medium, especially,

in the magnetohydrodynamic turbulence. For example, the

second-order Fermi mechanism has application in a wide

range of astrophysical objects. Into this group can be included

our consideration of particle acceleration in helical MHD

turbulence in which the known α-effect arise and it can possess

additional (initial) acceleration for more intensive mechanism

[9], [6]. In fact, the plasma velocity fluctuations u1 together

with the magnetic field fluctuations H1 produce a correlation

〈[u1,H1]〉/c ≡ E (the turbulent electromotive force) which

allows the system to evolve back toward a stationary state.

Beside it the helicity is a source of the electric field

E(α) = −α

c
H0 (1)

along the created homogeneous MF H0 [10], [8] (α is known

as the dynamo coefficient). In result, the electric field E(α)

can accelerate the charged particles. Effectiveness of the last

acceleration mechanism in helical MHD turbulence with the

second-order Fermi mechanism has been discussed in Paper I.

Comparison of energetic spectra of accelerated particles and

their temporal evolution is goal of this contribution.

The energetic particles can experience various kind of

energetic losses and/or they can also leave acceleration region

as a result of diffusion or convection. These processes result

in leakage of particles which have origin in the given energy

region owing to acceleration. One can introduce the escape

time te to take into account particle energetic losses. In this

approximation the diffusion equation (see Eq. (10) in Paper I)

takes the form [16], [13]

∂N

∂t
− 1

p2

∂

∂p
p2Dp

∂N

∂p
+

N

te
= q

δ(p − p0)

p2
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The third term N/te stands for particle leakage. The right hand

side of the equation corresponds to the continuous injection

of particles with momentum p0 and q is the particle number

injected in the unit of space during the unit of time.

The momentum diffusion coefficient Dp can be written as

a sum

Dp = DF + DK , (3)

where

DF =
p2〈u2

1〉
3vΛ

, DK = α2 p2Λ

3vR2
H

. (4)

The first term DF describes the statistical Fermi acceleration

due to energetic particle scattering on moving magnetic irreg-

ularities. The second term DK defines particle acceleration

by the large-scale electric field E(α) arising in the turbulent

medium due to α-effect. Here RH = pc/eH0 is the proton

Larmour radius. The relative efficiency of α-acceleration (in

comparison to the second order Fermi mechanism) for injec-

tion particle energy is given by the ratio

η =
α2

〈u2
1〉

(

Λ0

R0H

)2

, (5)

where Λ0, R0H corresponds to the momentum p0 of the

particle injection. If the particle mean free path has power

law dependence on momentum,

Λ = Λ0

(

ζ

ζ0

)λ

, ζ =
p

mc
, (6)

where ζ defines the dimensionless particle momentum and m
is the proton rest mass. Here ζ0 corresponds to the injection

momentum p0. Then the momentum diffusion coefficient (3)

related to the Fermi stochastic acceleration can be written as

DF = D0F ζ1−λ
√

1 + ζ2 , D0F =
m2c〈u2

1〉ζλ
0

3Λ0
. (7)

In the case of α-acceleration the coefficient DK is

DK = D0Kζλ−1
√

1 + ζ2 , D0K =
m2c α2Λ0ζ

2−λ
0

3R0H

. (8)

Note that Eq. (2) has been used for the description of CR ac-

celeration in various astrophysical objects. Solutions of similar

equations has been applied for analysis and interpretation of

solar CR spectra [13], [16], [14].



II. STEADY STATE SOLUTION

For the mean free path defined by Eq. (6) the diffusion

coefficient possesses the power law form:

Dp = D0ζ
γ . (9)

Defining dimensionless time,

τ =
t

t0
, t0 =

(mc)2

D0
, (10)

the equation (2) reads

∂N

∂τ
− 1

ζ2

∂

∂ζ
ζ(2+γ) ∂N

∂ζ
+

N

τe

= qt0
δ(ζ − ζ0)

(mc)3ζ2
. (11)

The quantity τe equals to the ratio of the escape time te to the

acceleration time t0 in (10):

τe =
te
t0

. (12)

Let the escape time from the acceleration region is indepen-

dent on CR energy (te = const). Such approximation has

been used, for example, in [13]. Some authors took also the

energetic dependence of te into considerations (see e.g. [3]).

The equilibrium CR energetic spectrum arises provided the

number of accelerated particles of given energy is equal to the

number of particles leaving acceleration region. In that case

the time derivative in the left hand side of Eq. (11) can be

neglected what gives the stationary equation. Analogously to

the solutions of the non-stationary equation in Paper I similar

expressions can be derived for steady state solutions. In result,

N(ζ) =
qt0

γ̃(mc)3
exp

[

−1 + γ

2
ln(ζζ0)

]

(13)

× Kν

(

exp [γ̃ ln(ζ0)]

γ̃
√

τe

)

Iν

(

exp [γ̃ ln(ζ)]

γ̃
√

τe

)

for ζ < ζ0, and

N(ζ) =
qt0

γ̃(mc)3
exp

[

−1 + γ

2
ln(ζζ0)

]

(14)

× Iν

(

exp [γ̃ ln ζ0]

γ̃
√

τe

)

Kν

(

exp [γ̃ ln ζ]

γ̃
√

τe

)

for ζ > ζ0. Here γ̃ = (2−γ)/2 and ν = (1+γ)/(2−γ). From

the last solution one obtain the expression for the density of

high energy particles:

N(ζ) ∝ ζ−1− γ

4 exp

(

−exp [γ̃ ln ζ]

γ̃
√

τe

)

. (15)

So, the particle density exponentially decreases with energy.

The solutions (13),(14) are valid only if γ 6= 2. In fact, when

exponent γ approach to 2 the index ν increases indefinitely.

This particular case need a special examination, as follows

below.

Let us consider the stochastic Fermi acceleration of par-

ticles having the constant mean free path (λ = 0). In the

nonrelativistic energy region the diffusion coefficient Dp in

(7) is proportional to momentum that γ = 1. Setting ν =

Fig. 1. The steady state energetic distribution for λ = 0.5 and
εk0 = 1 MeV. The case of Fermi acceleration.

Fig. 2. As in Fig. 1 in the case of α-acceleration.

2 in expression (14) one obtain the known expression for

nonrelativistic CR density [13], [14]

N(ζ) =
2qt0

(mc)3
1

ζζ0
I2

(

2

√

ζ0

τe

)

K2

(

2

√

ζ

τe

)

. (16)

The momentum diffusion coefficient (7) for ultrarelativistic

particles, in considered case of Λ = const, is proportional to

ζ2. Thus one has to solve the equation (11) with γ = 2. This

solution takes the known form [13], [14]

N(ζ) =
qt0

2(mc)3
√

1
τe

+ 9
4

(

ζ

ζ0

)Γu

, Γu = −3

2
−

√

1

τe

+
9

4

(17)

with the power law dependence of ultrarelativistic CR density

on particle momentum.

Now let us consider the steady state CR energetic spectra.

If the function N(ζ) is known, one can make the change of

variable ζ to kinetic energy using relationship

N(εk) =
p2

v
N(p) =

(mc)2ζ2

v
N(ζ) , (18)

where v is the particle velocity and the dimensionless momen-

tum is associated with kinetic energy according to

ζ =

√

εk(εk + 2mc2)

mc2
. (19)



The CR steady state energetic spectra calculated according

to (13),(14),(18) is shown in Fig. 1. These spectra correspond

to statistical Fermi acceleration of particles with the Λ ∝√
p (λ = 0.5). Numbers near curves denote value τe of the

relative rate of particle escape out of the acceleration region.

The injected particle kinetic energy equals to 1 MeV and the

exponent γ of the diffusion coefficient (9) is 0.5. The CR

spectrum in high energy region (above the injected energy)

prove to be harder with the escape time increase (Fig. 1) [13].

Now let us consider the steady state energetic spectrum typ-

ical for α-acceleration. We will exploit the same momentum

dependence of mean free path (λ = 0.5) as in the case of Fermi

acceleration in Fig. 1. Nonrelativistic momentum diffusion

coefficient Dp (8) has the form of (9) with index γ = −0.5.

In Fig. 2 the dependence of normalized particle density on

kinetic energy is illustrated, given by relations (13),(14),(18).

Here initial proton energy is the same (εk = 1 MeV) and

numbers near the curves denote τe. Analogically to Fig. 1 the

spectrum prove to be harder for increasing escape time. In the

low energy region the CR spectrum which is suitable for α-

acceleration, appears to be harder then the spectrum fitted to

Fermi acceleration. On the contrary the energetic distribution

of high energy CR is found to be softer for particle acceleration

by the large scale electric field E(α), Eq. (1).

III. PARTICLE ENERGETIC SPECTRA

The momentum spectrum exponent Γ can be found from

formulae

Γ =
ζ

N

∂N(ζ)

∂ζ
. (20)

For high energy particles (ζ > ζ0) one obtain from expression

(14) that

Γ(ζ) = −1 + γ

2
− exp [γ̃ ln ζ]

2
√

τe

[

Kν

(

2 exp [γ̃ ln ζ]

(2 − γ)
√

τe

)]

−1

(21)

×
{

Kν−1

(

exp [γ̃ ln ζ]

γ̃
√

τe

)

+ Kν+1

(

exp [γ̃ ln ζ]

γ̃
√

τe

)}

.

Evidently, this expression is valid only for γ 6= 2. In the

Fig. 3. The index of energetic spectrum in the steady state solution.
The case of Fermi acceleration.

case of γ = 2 which corresponds to Fermi acceleration of

Fig. 4. As in Fig. 3 in the case of α-acceleration.

ultrarelativistic particles with constant mean free path one

obtain from (17) that

Γ = Γu , (22)

i.e. a power law momentum spectrum with exponent Γ de-

pending on the single parameter τe.

The energy spectrum exponent can be calculated from

formulae

Γεk =
εk

N(εk)

∂N(εk)

∂εk

(23)

provided the momentum spectrum exponent Γζ ≡ Γ(ζ) is

known:

Γεk =
εk + mc2

εk + 2mc2

{

Γζ + 1 +
εk(εk + 2mc2)

(εk + mc2)2

}

. (24)

The spectral exponent Γεk as a function of kinetic energy

is shown in Fig. 3 (for Fermi acceleration with Dp defined

by (7)) and in Fig. 4 (for α-acceleration with Dp defined by

(8)) where τe = 0.1, λ = 0.5. The solid curves represent

nonrelativistic particles and the dash curves correspond to

ultrarelativistic ones. Note that nonrelativistic protons have

kinetic energy of about 200 MeV (or less) and ultrarelativistic

protons possess energy at least a few GeV. In the case of

stochastic Fermi acceleration the exponent γ = 0.5 in (9) for

nonrelativistic particles and γ = 3/2 in the ultrarelativistic

region. Fig. 4 corresponds to α-acceleration with λ = 0.5,

therefore, the exponent γ in (9) equals γ = −0.5 for nonrela-

tivistic particles and γ = 0.5 for ultrarelativistic ones. One can

see that for τe = 0.1; λ = 0.5 the curves which correspond

to nonrelativistic and ultrarelativistic protons intersect one

another at kinetic energy about εk1 ' 500 MeV in Figs. 3-

4. In the low energy region εk < εk1 the exponent Γεk

of nonrelativistic particles is bigger, but on the contrary for

εk > εk1 value of the exponent of ultrarelativistic particles

exceeds the corresponding value of nonrelativistic ones.

The dependence of spectrum exponent Γεk on kinetic energy

coincides with the solid curve (in Figs. 3-4) in nonrelativistic

region and with the dash curve for ultrarelativistic particles.

If the particle energy increases the spectrum exponent passes

gradually from solid curve to the dash ones. It is worth to note

that the steady state proton spectrum in the transrelativistic

energy region has been obtained in [16]. Let us consider



the particle acceleration in the transrelativistic region. Here

the diffusion coefficients (7),(8) do not have a power law

form (9) even for the simple momentum dependence of the

mean free path (6). From expressions (7),(8) follows that

the exponent γ of diffusion coefficient (9) increases by unity

between nonrelativistic and ultrarelativistic region. Defining

the power exponent in (9) by formulae

γ(ζ) =
ζ

Dp(ζ)

∂Dp(ζ)

∂ζ
(25)

in the total energy range one obtains correct γ value for

nonrelativistic as well as for ultrarelativistic particles. Then

the steady state solution (13),(14) can be used to calculate

CR spectra. In fact, this solution is rigorously correct only for

constant value of γ. In considered approximation the expres-

sion for momentum spectrum exponent Γ(ζ) was exploited

in all CR energy region where γ(ζ) is given by (25). These

approximate values of spectrum exponent (21),(24) are shown

in Figs. 3-4 as a dotted curves. It is seen from these figures

that exponent Γεk is monotonically decreasing function of

kinetic energy meanwhile the dotted curves coincides with

solid ones for nonrelativistic protons and they approach dash

curves corresponding to ultrarelativistic CR.

Fig. 5. The SCR energetic spectrum near the Earth [4].

The developed approach can be used for the analysis and

interpretation of energetic spectra of protons accelerated dur-

ing solar flares. However it is necessary to take into account

that derivation of Eq. (2) supposed the angular CR distribution

be near isotropic. The GLE of 1991, June 15, has SCR

distribution near to isotropic almost from the very beginning

of the event (the lanch of the GLE was at 08:10 UT) [?].

The energetic spectrum of SCR of this observed event near

the Earth became softer with the lapse of time [1], [4]. This

spectrum is presented in Fig. 5 (pick over [4]) for two instants

of time. It is clearly seen that in the beginning of event (at

08:48 UT) the spectrum is depleted by low energy particles,

but later the SCR distribution become softer due to the fact of

high energy particles rapidly leave the given volume. The peak

spectrum of this GLE is depicted which prove to be close to

the particle spectrum in the acceleration region [1], [4]. The

solid line in Fig. 6 represents the exponent of spectrum in the

GLE as a function of proton kinetic energy [4]. This exponent

Γεk meets the SCR peak spectrum shown in Fig. 5. The dash

curve presents the exponent calculated by (21, 24) where γ is

given by (25) supposing that the mean free path is independent

on kinetic energy (λ = 0) and the time of escape τe equals

to 0.03. The calculated value of Γεk in low energy region (

≤ 300 MeV) appears to be greater than the observed value

(solid line in Fig. 6).

Fig. 6. The calculated spectral index for the event of Fig. 5.

The coincidence is better when the parameter λ in (6) de-

pends on energy. According to experimental data the exponent

of the rigidity spectrum can often be presented as a linear

function of the logarithm of rigidity [?]. Similarly one can

take also λ to be linear function of ln ζ:

λ(ζ) = λ0 + λ1 ln
ζ

ζ0
, (26)

where λ0 corresponds to dimensionless momentum of injected

particles, ζ0. In this approximation the value of γ, Eq. (25),

depends on parameters λ0, λ1 entering the formula (26). The

dotted curve in Fig. 6 represents the spectrum index Γεk by

(21),(24) taking into account the mean free path given by

(6, 26). Note that under selected set of parameters λ0 =
−0.3, λ1 = 0.1 the mean free path decreases with energy in

low energy region and Λ is virtually constant at εk ≥ 1 GeV.

Alternative mechanism of CR acceleration appears to be an

acceleration process on astrophysical shock waves [14], [5],

[11], [15]. In such kind of acceleration the particle concentra-

tion prove to be a power law function of momentum and the

spectral exponent is defined by the medium compression ratio.

Number of effects result in the steepening of the spectrum in

the high energy region [5], [12]. Certain SCR flares can be

interpreted as a consequence of either stochastic acceleration

or shock wave acceleration. For example, in the paper [5] the

SCR spectrum in the event on November 28, 1972 has been

explained on the frame of shock acceleration mechanism. On

the contrary according to our calculations this spectrum can

be caused by stochastic particle acceleration when τe = 0.002
and λ = 0.5. The proton event on May 7, 1978, has been

characterized by the rather hard spectrum with steepening

at proton kinetic energy of 5 GeV [5], [12]. Following our

calculation this spectrum can be explained not only by the

shock acceleration but also by stochastic proton acceleration

in solar corona. The solar proton event on February 16,

1984, shows the power law rigidity spectrum of SCR up

to the kinetic energy of the order of 10 GeV [Loc.etc.90].



It is necessary to note that we failed to interpret this SCR

momentum distribution as a result of stochastic acceleration.

Evidently the crucial significance for the GLE on February 16,

1984 has the energetic particle acceleration by shock waves

propagated in solar corona [12].

IV. EVOLUTION OF ENERGETIC SPECTRA

Let us consider the evolution of particle momentum dis-

tribution starting from time - dependent equation (11). It is

convenient to use the Laplace transform

Φ(ζ, s) =

∫

∞

0

dτ e−sτΦ(ζ, τ) (27)

for the new distribution function

Φ(ζ, τ) = N(ζ, τ) exp

(

τ

τe

)

. (28)

The function (27) has to be continuous at ζ = ζ0 (ζ0 -

the dimensionless momentum of injected particles) and its

derivative on ζ at the point ζ0 has to satisfy the condition

provided by the existence of particle source in (11):

∂Φ(ζ0 + 0, s)

∂ζ
− ∂Φ(ζ0 − 0, s)

∂ζ
= − t0qζ

−2−q
0

(mc)3(s − γ̃2/τe)
(29)

where γ̃ = (2− γ)/2. This condition at ζ = ζ0 is satisfied by

the solution

Φ(ζ, s) =
t0q

γ̃(mc)3
(ζζ0)

−
1+γ

2

(s − γ̃2/τe)
Kν

(√
sζ γ̃

0

)

Iν

(√
sζ γ̃

)

(30)

for ζ < ζ0, and

Φ(ζ, s) =
t0q

γ̃(mc)3
(ζζ0)

−
1+γ

2

(s − γ̃2/τe)
Kν

(√
sζ γ̃

)

Iν

(√
sζ γ̃

0

)

(31)

for ζ > ζ0. Parameter γ defines momentum dependence of

the diffusion coefficient Dp(ζ) in (9) and the index of Bessel

functions ν = (1 + γ)/(2− γ). Inverse Laplace transform [?]

and using of (28) yields

N(ζ, τ) =
qt0

(2 − γ)(mc)3
(ζζ0)

−
1+γ

2 (32)

∫ τ̃

0

dξ

ξ
exp

[

− ξ

γ̃2τe

− ζ2−γ + ζ2−γ
0

4ξ

]

Iν

(

(ζζ0)
γ̃

2ξ

)

,

where the upper limit of integration is τ̃ = γ̃2τ .

Fig. 7 shows the dependence of the normalized particle

density on proton kinetic energy. The time - dependent density

has been calculated using (18),(32) for following parameters:

γ = 0.5; τe = 0.1; εk0 = 1 MeV. The value of γ corresponds

to λ = 1/2 in (6) in the case of Fermi acceleration of

nonrelativistic particles. Number near curves represent the

dimensionless time τ = t/t0 where t0 is given by (10).

The dash curve corresponds to the steady state solution

(13),(14),(18). One can see that the particle number of given

energy approaches the steady state value in large time limit,

therefore, the spectrum evolve gradually to this equilibrium

energetic distribution.

Fig. 7. The energy spectrum evolution. The case of Fermi acceleration.

Fig. 8. As in Fig. 7 in the case of α-acceleration.

The evolution of the spectra (under continuous particle in-

jection) is illustrated in Fig. 8 in the case of the α-acceleration.

Here γ = −0.5; τe = 0.1; εk0 = 1 MeV. This value of γ
relates to λ = 1/2 for nonrelativistic particles accelerated by

electric field (1). Numbers near solid curves are equal to τ
and the dash curve represents the equilibrium spectrum. For

example, in the instant τ = 0.05 the spectrum is closed to the

equilibrium one for εk ≤ 10 MeV. At τ = 0.2 the spectrum

virtually match up to proton kinetic energy εk ' 200 MeV.

The derived expressions allow to estimate the typical time

of CR spectrum approaching to the equilibrium energetic

distribution. Previously the magnitude of specific acceleration

time about 6 seconds has been used in (10),(7) for the initial

kinetic energy εk0 = 1 MeV and λ = 0.5. Let one choices

physical properties of the acceleration region, H0 = 100
gauss, Λ0 = 100R0, u1 = 108 cm/sec [5], [13], [2], [12].

Then calculation in the case of Fermi acceleration with the

diffusion coefficient (4) and the escape time τe = 0.1 gives at

instant 3 second (past their injection) the number of particles

of εk = 1 GeV differing from the equilibrium value less

than ≈ 5%. The energy of continuously injected particles was

εk0 = 1 MeV in calculation of the equilibrium spectrum.

The acceleration time for protons of εk = 100 MeV will

be roughly equal to one second (see in Fig. 7). The steady

state CR spectrum is formed rapidly when the intensity of



particle escape from the acceleration region is bigger. For

example, if τe = 0.01, the particle number of 1 GeV protons

coincides with the equilibrium value (of ≈ 5.10−2) past 1

second of continuous injection of 1 MeV protons. Roughly the

same values of typical acceleration times has been calculated

in the case of α-acceleration for the parameter η = 10
(which characterizes relative efficiency of this acceleration

mechanism, see Eq. (5)). Note that these obtained values

of acceleration times sufficiently good agree with both the

observational data and the known consideration of energetic

particle statistical acceleration [5], [13], [2], [14].

V. CONCLUSION

The steady state solutions of equation describing particle

acceleration are derived and these solutions are applied to the

analysis of solar cosmic ray spectra. The time - dependent

solutions are investigated and the typical acceleration times are

estimated. It was shown that typical acceleration time (from

proton kinetic energy εk0 = 1 MeV up to 1 GeV) for solar

coronal active regions has the order of magnitude of one or a

few seconds. The obtained results can be useful for description

of statistical acceleration in solar flares, supernova remnants,

galactic nuclei and other astrophysical environments.
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