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Abstract— The acceleration of energetic particles is investi-
gated on the base of kinetic equation for cosmic ray distribution
function in a statistically anisotropic turbulent magnetic field.
The cosmic ray acceleration by the turbulent field is considered
using the diffusion approach. The diffusion approximation of the
kinetic equation is examined for particle distribution function
which is nearly isotropic. It is known that large-scale magnetic
and electric field are generated in a medium with statistically
anisotropic magnetohydrodynamical turbulence. The particle
acceleration by large scale electric field can be very efficient
if the magnetic helicity of turbulent medium is sufficiently high.
The effectiveness of this acceleration mechanism is compared
with Fermi acceleration of the second order.

I. INTRODUCTION

Theory of charged particle transport in magnetohydrody-

namic (MHD) turbulence still attracts large attention due to

many applications in both laboratory and astrophysical plasma.

Despite of enormous effort, numerous problems concerning

particle acceleration wait for their resolutions and the related

problems and questions remains deficiently explored. Besides

a lot of other questions concerning the creating and/or ampli-

fying of magnetic fields (MF) by turbulence (see in [20], [14]),

another question is, how does MHD turbulence influence to

transport of heat and cosmic rays [4], [2]. MHD turbulence

is an important agent for particle acceleration as was pointed

first by Fermi [9].

The second-order Fermi mechanism (stochastic acceleration

of particles by scattering with randomly moving magnetized

clouds) has application in a wide range of astrophysical objects

including the solar wind (SW) and solar flares [19], [1], cluster

of galaxies [5], the Galactic center [15], etc. Usually, this

mechanism was applied in cases, where protons are accelerated

from a thermal distribution.

Another relating stochastic acceleration mechanism is con-

nected with the created magnetic field in the helical MHD

turbulence [7], [10], [22]. In fact, due to an anisotropic helical

turbulence the large scale electric field is generated [14], [27],

effect known as α-effect. The electric field is directed along

regular magnetic field (MF) and it can efficiently acceler-

ate charged particles in the turbulent plasma. The equation

describing such acceleration mechanism (α-acceleration) was

firstly derived in [12]. The stochastic particle acceleration by

anisotropic helical turbulence was investigated on the frame

of kinetic equation for charged energetic particle distribution

function in the paper [7].
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Comparison of the α-acceleration mechanism in helical

MHD turbulence with the second-order Fermi mechanism

is subject of the present contribution. The energetic spectra

of accelerated energetic particles is investigated in following

contribution [8].

II. THE KINETIC EQUATION

Owing to very high conductivity of the SW, the magnetic

field is frozen-in into SW plasma which moves with the

velocity u. Thus the electric field E acting on the charged

particle is

E = −1

c
[u,H] . (1)

Let us separate the magnetic field H and plasma velocity u

to homogeneous (regular) components H0, u0 and fluctuating

(random) components H1, u1,

H = H0 + H1 , u = u0 + u1 . (2)

Therefore, the Lorentz force possess beside the regular com-

ponent also random component

F 1 = eE1 +
e

c
[v,H1] , (3)

where the stochastic electric field has the form

E1 = −1

c
([u0,H1] + [u1,H0] + [u1,H1] − 〈[u1,H1]〉) .

(4)

The angle brackets denote the averaging over the statistical

ensemble of fields. Let us introduce the correlation tensor of

random forces,

Dαβ(r,p, t; r1,p1, t1) = 〈F1α(r,p, t)F1β(r1,p1, t1)〉 . (5)

Then averaged in the ensemble of the small scale fluctuation

exact kinetic equation by usual averaging procedure [7], one

finds in result the kinetic equation for the averaged (mean) CR

distribution function F = 〈f〉 [13], [7],

∂F
∂t

+ v
∂F
∂r

+ F 0
∂F
∂p

=
∂

∂pα

Dαβ

∂F
∂pβ

, (6)

where

Dαβ =

∫

∞

0

dτDαβ(r,p, t; r − vτ,p, t − τ) . (7)

The mean electric field E0 is determined by correlator of the

random medium velocity u1 and the stochastic MF H1. It is

known that in an anisotropic turbulent medium the large-scale



electric field appears which is directed along regular MF (so-

called α-effect) [14], [27]. thus in this case the fields u1 and

H1 are correlated:

〈[u1,H1]〉 = αH0 . (8)

Here the quantity α has dimensionality of velocity and is

proportional to the helicity of turbulent medium. Consequently,

owing to α-effect the following large-scale electric field is

generated in a turbulent medium:

E(α) = −α

c
H0 . (9)

When the energetic particle scattering on magnetic irreg-

ularities is sufficiently intense so that the CR distribution

function is near to isotropic, the diffusion approximation can

be performed. Thus one can obtain the transport equation

for CR density, N =
∫

dΩF(r,p, t), where F is integrated

over the angular variables of particle velocity. This transport

equation has been obtained in previous paper [7].

III. THE MOMENTUM DIFFUSION COEFFICIENT

Here we consider only homogeneous case when the CR

distribution function is independent on spatial coordinates.

Performing the diffusion approximation of (6) one can obtain

∂N

∂t
− 1

p2

∂

∂p
p2Dp

∂N

∂p
= Q . (10)

Here we added the particle source Q and Dp presents the

diffusion coefficient in the space of absolute value of particle

momentum. This equation has a known form in stochastic

acceleration theory [25], [26] and it is widely used in various

astrophysical application. The momentum diffusion coefficient

Dp can be written as a sum [7]

Dp = DF + DK , (11)

where

DF = β
p2〈u2

1〉
3vΛ

, DK = α2 p2Λ

3vR2
H

. (12)

The first term DF [26] describes the statistical Fermi acceler-

ation [9] due to energetic particle scattering on moving mag-

netic irregularities. Here β depends on the relation between

energy of regular H2
0 and random 〈H2

1 〉 magnetic fields [7].

In most cases the regular and random MF have the same order

of magnitude. We can believe that β ≈ 1. The second term

DK defines particle acceleration by the large-scale electric

field E(α) arising in the turbulent medium due to α-effect

[12], [7]. Here RH = pc/eH0 is the proton Larmour radius.

The relative efficiency of α-acceleration (in comparison to the

second order Fermi mechanism) is given by the ratio

DK

DF

=
α2

〈u2
1〉

(

Λ

RH

)2

. (13)

The value of α2/〈u2
1〉 is a measure of gyrotropy in the turbu-

lence and it is usually much less than unity in cosmic plasma.

However the particle mean free path Λ can significantly exceed

the Larmour radius.

The magnetic helicity of solar wind plasma was repeatedly

measured on Voyager 1, 2, and Helios 1, 2. The mean free

path in interplanetary magnetic field (IMF) exceeds Larmour

radius more than on two order of magnitude in the energy

region from several MeV up to some hundreds of MeV. Thus

the dimensionless quantity (13) can be much more than unity

in the solar wind plasma.

The magnetic helicity of the solar corona is extensive

investigated currently. It is shown that the main contribution to

coronal magnetic helicity is caused by solar active regions and

the most important helicity injection in corona is caused by

emergence of photospheric magnetic flux [3], [11], [24]. The

theoretical investigations of α in solar convective zone allow to

obtain the estimate value of α2/〈u2
1〉 ' 10−2−10−3 [21]. The

ratio Λ/RH ≥ 100 for the proton energy range from MeV up

to hundreds of MeV [6]. Therefore the ratio (13) specifying the

relative efficiency of α-acceleration can be considerable (more

than unity) in many astrophysical objects, e.g. solar corona,

solar wind, supernova remnants, and so on.

In what follows we will examine only monoenergetic parti-

cle injection. The quantity of (13) under given injection energy

has the form

η =
α2

〈u2
1〉

(

Λ0

R0H

)2

, (14)

where Λ0, R0H corresponds to the momentum p0 of the

particle injection. Note that dimensionless parameter η can

be more (or even much more) than unity.

Let us suppose that particle mean free path has power law

dependence on momentum,

Λ = Λ0

(

ζ

ζ0

)λ

, ζ =
p

mc
, (15)

where ζ defines the dimensionless particle momentum and m
is the proton rest mass. Here ζ0 corresponds to the injection

momentum p0. Then the momentum diffusion coefficient (12)

related the Fermi stochastic acceleration can be written as

DF = D0F ζ1−λ
√

1 + ζ2 , D0F =
m2c〈u2

1〉ζλ
0

3Λ0
. (16)

In the case of α-acceleration the coefficient DK is

DK = D0Kζλ−1
√

1 + ζ2 , D0K =
m2c α2Λ0ζ

2−λ
0

3R0H

. (17)

In the nonrelativistic range (ζ ¿ 1)

DF ∝ ζ1−λ , DK ∝ ζλ−1 ,

and for ultrarelativistic particles (p À mc) it follows from

(16) and (17) that

DF ∝ ζ2−λ , DK ∝ ζλ .

One can see that for Λ ∝ ζλ, the momentum diffusion

coefficient prove to be the power law function of momentum

in the both energy ranges. It is worth to note that stochastic

acceleration of transrelativistic CR has been investigated in

[23].



The diffusion coefficients (12) depend essentially on the

particle mean free path Λ (15). So, if Λ increases with proton

kinetic energy (0 < λ < 1) then diffusion coefficient DF

for the second order Fermi mechanism is also rising function

of momentum. The quantity (17) in this case decreases with

kinetic energy in nonrelativistic range, and it is increasing

function of ζ for ultrarelativistic particles.

Fig. 1. The momentum diffusion coefficient Dp dependence on kinetic energy

for λ = 0.5.

The dependence of Dp on the particle kinetic energy εk

(εk = ε−mc2, where ε is total energy) in D0F units is shown

in Fig. 1 for Λ ∝ √
p, (λ = 0.5). The Fermi acceleration

coefficient DF is shown by the dash curve, see (16). The

solid curves are depicted for values of DK/DF0 describing

α-acceleration, see (17). Corresponding values of η, (14),

are written near the curves. In our case of λ = 0.5 the α-

acceleration is more efficient for low energetic particles while

the stochastic Fermi acceleration dominate in high energy

range. For example, if η = 10 both mechanisms have nearly

the same efficiency at proton kinetic energy εk = 100 MeV.

When the proton mean free path has the power law de-

pendence on momentum (15), the relative efficiency of α-

acceleration (13) became the form

DK

DF

= η

(

ζ

ζ0

)2(λ−1)

, (18)

One can see that at λ = 1, (Λ ∝ p), this ratio is independent

on particle energy; when λ > 1, (or λ < 1), the ratio DK/DF

grows (or decreases) with particle momentum.

The dependence of the relative efficiency (18) is demon-

strated in Fig. 2 for the exponent of the mean free path equal

to λ = 0.5 and several values of η (denoted near curves). The

relative efficiency of acceleration by α-effect decreases when

particle kinetic energy grows. Thus Fermi acceleration appears

to be more effective for high energy CR. The magnitude of

proton kinetic energy provided the equal efficiency of both

acceleration mechanisms depends on the value of parameter

η. For example, if η = 10, this typical energy equals 100

MeV, whereas for η = 2, the equality DF = DK becomes at

εk = 40 MeV.

Fig. 2. The relative efficiency (18) of α-acceleration for λ = 0.5.

IV. THE INSTANTANEOUS INJECTION

Let us consider the CR energetic spectrum evolution in the

case of instantaneous monoenergetic particle injection. Then

the particle source in Eq.(10) reads

Q =
δ(p − p0)δ(t)

p2
. (19)

The momentum diffusion coefficient (16),(17) in equation

(10) prove to be a power law function of momentum for

nonrelativistic and ultrarelativistic particles provided the mean

free path is defined by Eq. (15), i.e.

Dp = D0ζ
γ (20)

holds. Note that in the case of Fermi mechanism γ = 1 − λ
(or γ = 2−λ) for nonrelativistic (or ultrarelativistic) particles.

On the other hand, in the case of α-acceleration γ = λ−1 (or

γ = λ) for nonrelativistic (or ultrarelativistic) particles. Taking

into account expressions (19),(20) the Eq. (10) reads

∂N

∂τ
− 1

ζ2

∂

∂ζ
ζ2+γ ∂N

∂ζ
=

δ(ζ − ζ0)δ(τ)

(mc)3ζ2
, (21)

where τ is dimensionless time:

τ =
t

t0
, t0 =

(mc)2

D0
. (22)

Solution of this equation by the method of Laplace trans-

form yields the expression for evolution of temporal - momen-

tum distribution of particles past the instantaneous monoener-

getic injection,

N(ζ, τ) =
exp

[

− 1+γ
2 ln(ζζ0)

]

(2 − γ)(mc)3τ
exp

(

−ζ2−γ + ζ2−γ
0

(2 − γ)2τ

)

Iν

(

2 exp [γ̃ ln(ζζ0)]

(2 − γ)2τ

)

, (23)

where γ̃ = (2−γ)/2. The evolution of particle distribution in

the momentum space is illustrated on Fig. 3 for instantaneous

injection (23) and γ = 0.5 in the diffusion coefficient (20)

for the Fermi acceleration mechanism (using (22),(16)). This

value of γ corresponds to the mean free path proportional to



Fig. 3. Evolution of particle density for t0 = 6 sec, γ = 0.5 upon the Fermi

acceleration.

Fig. 4. Evolution of particle density for t0 = 6 sec, γ = 0.5 upon the

α-acceleration.

√
p. The injection momentum p0 corresponds to proton kinetic

energy εk0 = 1 MeV. Number near the curves are equal to the

time interval since particle ejection (in seconds). Time t0 = 6
seconds corresponds, for example, to the energy ε = 1 MeV,

the magnetic field in acceleration region H0 = 100 gauss

[19], [6], the mean free path of 1 MeV proton Λ0 = 100R0

[6], [17] and, the random medium velocity u1 is accepted to

equal Alfvenic speed uA = 108 cm/s [6], [18], [16], [19]. The

initial δ-like momentum distribution (19) became more and

more smooth shape and the maximum of distribution shifts to

the low energy region.

In the next Fig. 4 there is also particle dependence on

dimensionless momentum ζ. As in Fig. 3, the mean free path

has exponent equal λ = 0.5, but the momentum diffusion

coefficient Dp has the form (17) fitting the α-acceleration

process. In this case γ = λ − 1 in (20), so, γ = −0.5 for

nonrelativistic particles. The acceleration time t0 according

(22),(17) was calculated for η = 10, and other parameters

are the same as in Fig. 3. Here the evolution in momentum

distribution occurs more rapidly due to α-acceleration than

in the Fermi mechanism. This effect is caused by greater

magnitude of acceleration time for the second order Fermi

acceleration in the considered energy region in the case of

chosen parameter η = 10.

V. CONCLUSION

The statistical acceleration of cosmic rays by anisotropic

plasma turbulence is investigated. It is shown that the relative

efficiency of α-acceleration is determined by the medium

helicity and by the mean free path dependence on particle

energy. The relative efficiency of acceleration by α-effect

decreases when particle kinetic energy grows. It has been

shown that evolution in momentum distribution occurs more

rapidly due to α-acceleration than in the Fermi mechanism.

The α-acceleration appears to be more effective for low energy

CR and can by considered as an initial acceleration mechanism

in helical turbulent environment. Energy spectra of accelerated

particles and the energy spectra evolution is subject of the next

contribution [8].
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